A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
More about Open Access at the CrickAuthors list
Akul Singhania Raman Verma Christine Graham Jo Lee Trang Tran Matthew Richardson Patrick Lecine Philippe Leissner Matthew PR Berry Robert Wilkinson Karine Kaiser Marc Rodrigue Gerrit Woltmann Pranabashis Haldar Anne O'GarraAbstract
Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we show a blood transcriptional signature of active tuberculosis using RNA-Seq, confirming microarray results, that discriminates active tuberculosis from latently infected and healthy individuals, validating this signature in an independent cohort. Using an advanced modular approach, we utilise the information from the entire transcriptome, which includes overabundance of type I interferon-inducible genes and underabundance of IFNG and TBX21, to develop a signature that discriminates active tuberculosis patients from latently infected individuals or those with acute viral and bacterial infections. We suggest that methods targeting gene selection across multiple discriminant modules can improve the development of diagnostic biomarkers with improved performance. Finally, utilising the modular approach, we demonstrate dynamic heterogeneity in a longitudinal study of recent tuberculosis contacts.
Journal details
Journal Nature Communications
Volume 9
Issue number 1
Pages 2308
Available online
Publication date
Full text links
Publisher website (DOI) 10.1038/s41467-018-04579-w
Figshare View on figshare
Europe PubMed Central 29921861
Pubmed 29921861
Keywords
Related topics
Type of publication