A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution
More about Open Access at the CrickAuthors list
Michele Bortolomeazzi Lucia Montorsi Damjan Temelkovski Reda Keddar Amelia Acha Michael J Pitcher Gianluca Basso Luigi Laghi Manuel Rodriguez-Justo Jo Spencer Francesca CiccarelliAbstract
Multiplexed imaging technologies enable the study of biological tissues at single-cell resolution while preserving spatial information. Currently, high-dimension imaging data analysis is technology-specific and requires multiple tools, restricting analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell Identification from MultiPLexed Images), a flexible and technology-agnostic software that unifies all steps of multiplexed imaging data analysis. After raw image processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue slide as well as cell-independent quantifications of marker expression to investigate features undetectable at the cell level. SIMPLI is highly customisable and can run on desktop computers as well as high-performance computing environments, enabling workflow parallelisation for large datasets. SIMPLI produces multiple tabular and graphical outputs at each step of the analysis. Its containerised implementation and minimum configuration requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data analysis. Software is available at "SIMPLI [ https://github.com/ciccalab/SIMPLI ]".
Journal details
Journal Nature Communications
Volume 13
Issue number 1
Pages 781
Available online
Publication date
Full text links
Publisher website (DOI) 10.1038/s41467-022-28470-x
Europe PubMed Central 35140207
Pubmed 35140207
Keywords
Related topics
Type of publication