A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control

More about Open Access at the Crick


How cells control the overall size and growth of membrane-bound organelles is an important unanswered question of cell biology. Fission yeast cells maintain a nuclear size proportional to cellular size, resulting in a constant ratio between nuclear and cellular volumes (N/C ratio). We have conducted a genome-wide visual screen of a fission yeast gene deletion collection for viable mutants altered in their N/C ratio, and have found that defects in both nucleocytoplasmic mRNA transport and lipid synthesis alter the N/C ratio. Perturbing nuclear mRNA export results in accumulation of both mRNA and protein within the nucleus, and leads to an increase in the N/C ratio which is dependent on new membrane synthesis. Disruption of lipid synthesis dysregulates nuclear membrane growth and results in an enlarged N/C ratio. We propose that both properly regulated nucleocytoplasmic transport and nuclear membrane growth are central to the control of nuclear growth and size.

Journal details

Journal PLOS Genetics
Volume 13
Issue number 5
Pages e1006767
Available online
Publication date

Crick authors

Crick First author
Crick Corresponding author