Active actin gels

Abstract

The self-organization of actin filaments is a topic that links cell biology with condensed matter physics. In vitro assays allow precise manipulation of component mechanical and chemical properties, needed for rigorous tests of theoretical models. We review recent work on in vitro motility assays that documented emergence of ordered actin filament microdomains powered by myosin motor proteins at high filament densities. Motor and filament surface density and mechanochemical cycle kinetics are additional parameters under current investigation. Individual filament collisions have been studied in order to elucidate the emergent population behavior. Apolar, weak  interactions evidenced by local filament deformations during crossover events are attenuated at high motor densities. Theoretical analysis requires refinement of rigid rod filament models. In intact cells, accessory proteins modulate actin filament length, bundling or sliding and this gives rise to complex emergent structures and behaviors such as cell motility and chemotaxis. The development of generic, mechanical and biochemical frameworks with predictive power that link molecular properties with micro- and macroscopic phenomena seen in living cells requires dialogue between theoreticians and experimentalists.

Journal details

Volume 5
Issue number 1
Pages 39-42
Publication date

Keywords

Type of publication

Crick labs/facilities

Crick authors

Crick First author
Crick Corresponding author