Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse


Early mammalian embryogenesis is controlled by mechanisms governing the balance between pluripotency and differentiation. The expression of early lineage-specific genes can vary significantly between species, with implications for developmental control and stem cell derivation. However, the mechanisms involved in patterning the human embryo are still unclear. We analyzed the appearance and localization of lineage-specific transcription factors in staged preimplantation human embryos from the zygote until the blastocyst. We observed that the pluripotency-associated transcription factor OCT4 was initially expressed in 8-cell embryos at 3 days post-fertilization (dpf), and restricted to the inner cell mass (ICM) in 128-256 cell blastocysts (6dpf), approximately 2 days later than the mouse. The trophectoderm (TE)-associated transcription factor CDX2 was upregulated in 5dpf blastocysts and initially coincident with OCT4, indicating a lag in CDX2 initiation in the TE lineage, relative to the mouse. Once established, the TE expressed intracellular and cell-surface proteins cytokeratin-7 (CK7) and fibroblast growth factor receptor-1 (FGFR1), which are thought to be specific to post-implantation human trophoblast progenitor cells. The primitive endoderm (PE)-associated transcription factor SOX17 was initially heterogeneously expressed in the ICM where it co-localized with a sub-set of OCT4 expressing cells at 4-5dpf. SOX17 was progressively restricted to the PE adjacent to the blastocoel cavity together with the transcription factor GATA6 by 6dpf. We observed low levels of Laminin expression in the human PE, though this basement membrane component is thought to play an important role in mouse PE cell sorting, suggesting divergence in differentiation mechanisms between species. Additionally, while stem cell lines representing the three distinct cell types that comprise a mouse blastocyst have been established, the identity of cell types that emerge during early human embryonic stem cell derivation is unclear. We observed that derivation from plating intact human blastocysts resulted predominantly in the outgrowth of TE-like cells, which impairs human embryonic stem cell derivation. Altogether, our findings provide important insight into developmental patterning of preimplantation human embryos with potential consequences for stem cell derivation.

Journal details

Volume 375
Issue number 1
Pages 54-64
Publication date


Type of publication

Crick authors

Crick First author
Crick Corresponding author