Application of deep learning methods: From molecular modelling to patient classification
Abstract
We are now well into the information driven age with complex, heterogeneous, datasets in the biological sciences continuing to grow at a rapid pace. Moreover, distilling of such datasets, to find new governing principles, are underway. Leading the surge are new and exciting algorithmic developments in computer simulation and machine learning, most notably for the latter, those centred on deep learning. However, practical applications of cell centric computations within the biological sciences, even when carefully benchmarked against existing experimental datasets, remain challenging. Here we discuss the application of deep learning methodologies to support our understanding of cell functionality and as an aid to patient classification. Whilst comprehensive end-to-end deep learning approaches that utilise knowledge of the cell and its molecular components to aid human disease classification are yet to be implemented, important for opening the door to more effective molecular and cell-based therapies, we illustrate that many deep learning applications have been developed to tackle components of such an ambitious pipeline. We end our discussion on what the future may hold, especially how an integrated framework of computer simulations and deep learning, in conjunction with wet-bench experimentation, could enable to reveal the governing principles underlying cell functionalities within the tissue environments cells operate.
Journal details
Journal Experimental Cell Research
Volume 418
Issue number 2
Pages 113278
Available online
Publication date
Full text links
Publisher website (DOI) 10.1016/j.yexcr.2022.113278
Europe PubMed Central 35810775
Pubmed 35810775
Keywords
Related topics
Type of publication