Cell-envelope remodeling as a determinant of phenotypic antibacterial tolerance in Mycobacterium tuberculosis
More about Open Access at the CrickAuthors list
Gérald Larrouy-Maumus Leonardo B Marino Ashoka VR Madduri TJ Ragan Debbie M Hunt Lucrezia Bassano Maximiliano Gutierrez D Branch Moody Fernando R Pavan Luiz Pedro CarvalhoAbstract
The mechanisms that lead to phenotypic antibacterial tolerance in bacteria remain poorly understood. We investigate whether changes in NaCl concentration toward physiologically higher values affect antibacterial efficacy against (Mtb), the causal agent of human tuberculosis. Indeed, multiclass phenotypic antibacterial tolerance is observed during Mtb growth in physiologic saline. This includes changes in sensitivity to ethionamide, ethambutol, d-cycloserine, several aminoglycosides, and quinolones. By employing organism-wide metabolomic and lipidomic approaches combined with phenotypic tests, we identified a time-dependent biphasic adaptive response after exposure of Mtb to physiological levels of NaCl. A first rapid, extensive, and reversible phase was associated with changes in core and amino acid metabolism. In a second phase, Mtb responded with a substantial remodelling of plasma membrane and outer lipid membrane composition. We demonstrate that phenotypic tolerance at physiological concentrations of NaCl is the result of changes in plasma and outer membrane lipid remodeling and not changes in core metabolism. Altogether, these results indicate that physiologic saline-induced antibacterial tolerance is kinetically coupled to cell envelope changes and demonstrate that metabolic changes and growth arrest are not the cause of phenotypic tolerance observed in Mtb exposed to physiologic concentrations of NaCl. Importantly, this work uncovers a role for bacterial cell envelope remodeling in antibacterial tolerance, alongside well-documented allterations in respiration, metabolism, and growth rate.
Journal details
Journal ACS Infectious Diseases
Volume 2
Issue number 5
Pages 352-360
Available online
Publication date
Full text links
Publisher website (DOI) 10.1021/acsinfecdis.5b00148
Figshare View on figshare
Europe PubMed Central 27231718
Pubmed 27231718
Keywords
Related topics
Type of publication