Concurrent genome and epigenome editing by CRISPR-mediated sequence replacement
Abstract
Recent advances in genome editing have facilitated the direct manipulation of not only the genome, but also the epigenome. Genome editing is typically performed by introducing a single CRISPR/Cas9-mediated double-strand break (DSB), followed by non-homologous end joining (NHEJ)- or homology-directed repair-mediated repair. Epigenome editing, and in particular methylation of CpG dinucleotides, can be performed using catalytically inactive Cas9 (dCas9) fused to a methyltransferase domain. However, for investigations of the role of methylation in gene silencing, studies based on dCas9-methyltransferase have limited resolution and are potentially confounded by the effects of binding of the fusion protein. As an alternative strategy for epigenome editing, we tested CRISPR/Cas9 dual cutting of the genome in the presence of in vitro methylated exogenous DNA, with the aim of driving replacement of the DNA sequence intervening the dual cuts via NHEJ.
Journal details
Journal BMC Biology
Volume 17
Issue number 1
Pages 90
Available online
Publication date
Full text links
Publisher website (DOI) 10.1186/s12915-019-0711-z
Europe PubMed Central 31739790
Pubmed 31739790
Keywords
Type of publication