Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD
More about Open Access at the CrickAuthors list
Graeme Hewitt Valerie Borel Sandra Segura-Bayona Tohru Takaki Phil Ruis Roberto Bellelli Laura C Lehmann Lucia Sommerova Aleksandra Vancevska Antonia Tomas-Loba Kang Zhu Christopher Cooper Kasper Fugger Harshil Patel Robert Goldstone Deborah Schneider-Luftman Ellie Herbert Gordon Stamp Rachel Brough Stephen Pettitt Christopher J Lord Stephen West Ivan Ahel Dragana Ahel J Ross Chapman Sebastian Deindl Simon Boulton Toggle all authors (27)
Abstract
Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.
Journal details
Journal Molecular Cell
Volume 81
Issue number 4
Pages 767-783.e11
Available online
Publication date
Full text links
Publisher website (DOI) 10.1016/j.molcel.2020.12.006
Figshare View on figshare
Europe PubMed Central 33333017
Pubmed 33333017
Keywords
Related topics
Type of publication