FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression

More about Open Access at the Crick

Abstract

Forkhead transcription factors of the O class (FOXOs) are important targets of the phosphatidylinositol 3-kinase/Akt pathway, and are key regulators of the cell cycle, apoptosis and response to oxidative stress. FOXOs have been shown to have tumour suppressor function and are important for stem cell maintenance. We have performed a detailed analysis of the transcriptional programme induced in response to Forkhead-box protein O3a (FOXO3a) activation. We observed that FOXO3a activation results in the repression of a large number of nuclear-encoded genes with mitochondrial function. Repression of these genes was mediated by FOXO3a-dependent inhibition of c-Myc. FOXO3a activation also caused a reduction in mitochondrial DNA copy number, expression of mitochondrial proteins, respiratory complexes and mitochondrial respiratory activity. FOXO3a has been previously implicated in the detoxification of reactive oxygen species (ROS) through induction of manganese-containing superoxide dismutase (SOD2). We observed that reduction in ROS levels following FOXO3a activation was independent of SOD2, but required c-Myc inhibition. Hypoxia increases ROS production from the mitochondria, which is required for stabilisation of the hypoxia-inducible factor-1α (HIF-1α). FOXO3a activation blocked the hypoxia-dependent increase in ROS and prevented HIF-1α stabilisation. Our data suggest that FOXO factors regulate mitochondrial activity through inhibition of c-Myc function and alter the hypoxia response.

Journal details

Volume 19
Issue number 6
Pages 968-979
Publication date

Keywords

Crick authors

Crick First author
Crick Corresponding author