Genetic dissection of triplicated chromosome 21 orthologs yields varying skeletal traits in Down syndrome model mice
More about Open Access at the CrickAuthors list
Kourtney Sloan Jared Thomas Matthew Blackwell Deanna Voisard Eva Lana-Elola Sheona Watson-Scales Daniel L Roper Joseph M Wallace Elizabeth MC Fisher Victor Tybulewicz Randall J RoperAbstract
Down syndrome (DS) phenotypes result from triplicated genes, but it is generally unknown how specific three copy human chromosome 21 (Hsa21) orthologous genes or interactions between genes affect these traits. A mouse mapping panel genetically dissecting Hsa21 syntenic regions was used to investigate the contributions and interactions triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16). Four-month-old femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr, and Dp1Tyb;Dyrk1a+/+/- mice were analyzed by micro-computed tomography and 3-point bending to assess skeletal structure and mechanical properties. Male and female Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 in three copies, display specific bone deficits similar to humans with DS and were used as a baseline comparison for the other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex, and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal deficits. As triplicated genes may both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes.
Journal details
Journal Disease Models and Mechanisms
Volume 16
Issue number 4
Pages dmm049927
Available online
Publication date
Full text links
Publisher website (DOI) 10.1242/dmm.049927
Europe PubMed Central 36939025
Pubmed 36939025
Keywords
Related topics
Type of publication