In vivo aspects of protein folding and quality control


Most proteins must fold into unique three-dimensional structures to perform their biological functions. In the crowded cellular environment, newly synthesized proteins are at risk of misfolding and forming toxic aggregate species. To ensure efficient folding, different classes of molecular chaperones receive the nascent protein chain emerging from the ribosome and guide it along a productive folding pathway. Because proteins are structurally dynamic, constant surveillance of the proteome by an integrated network of chaperones and protein degradation machineries is required to maintain protein homeostasis (proteostasis). The capacity of this proteostasis network declines during aging, facilitating neurodegeneration and other chronic diseases associated with protein aggregation. Understanding the proteostasis network holds the promise of identifying targets for pharmacological intervention in these pathologies.

Journal details

Journal Science
Volume 353
Issue number 6294
Pages aac4354
Publication date


Type of publication

Crick authors

Crick First author
Crick Corresponding author