Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target
More about Open Access at the CrickAuthors list
Johan Vande Voorde Rory T Steven Arafath K Najumudeen Catriona A Ford Alex Dexter Ariadna Gonzalez-Fernandez Chelsea J Nikula Yuchen Xiang Lauren Ford Stefania Maneta Stavrakaki Kathryn Gilroy Lucas B Zeiger Kathryn Pennel Phimmada Hatthakarnkul Efstathios A Elia Ammar Nasif Teresa Murta Eftychios Manoli Sam Mason Michael Gillespie Tamsin RM Lannagan Nikola Vlahov Rachel A Ridgway Colin Nixon Alexander Raven Megan Mills Dimitris Athineos Georgios Kanellos Craig Nourse David M Gay Mark Hughes Amy Burton Bin Yan Katherine Sellers Vincen Wu Kobe De Ridder Engy Shokry Alejandro Huerta Uribe William Clark Graeme Clark Kristina Kirschner Bernard Thienpont Vivian Li Oliver DK Maddocks Simon T Barry Richard JA Goodwin James Kinross Joanne Edwards Mariia Yuneva David Sumpton Zoltan Takats Andrew D Campbell Josephine Bunch Owen J Sansom Toggle all authors (54)
Abstract
The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.
Journal details
Journal Nature Metabolism
Volume 5
Issue number 8
Pages 1303-1318
Available online
Publication date
Full text links
Publisher website (DOI) 10.1038/s42255-023-00857-0
Europe PubMed Central 37580540
Pubmed 37580540
Keywords
Related topics
Type of publication