Metabolic turnover and dynamics of modified ribonucleosides by 13C labeling
More about Open Access at the CrickAuthors list
Paulo Da Costa Gameiro Guerreiro Vesela Encheva Mariana Silva Dos Santos James Macrae Jernej UleAbstract
Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples, and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under non-stationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.
Journal details
Journal Journal of Biological Chemistry
Volume 297
Issue number 5
Pages 101294
Available online
Publication date
Full text links
Publisher website (DOI) 10.1016/j.jbc.2021.101294
Europe PubMed Central 34634303
Pubmed 34634303
Keywords
Related topics
Type of publication