Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis

More about Open Access at the Crick


TDP-43 (encoded by the gene ) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous to dissect TDP-43 function at physiological levels both and Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. , this gain-of-function mutation in endogenous causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.

Journal details

Journal EMBO Journal
Volume 37
Issue number 11
Pages e98684
Available online
Publication date

Crick authors

Crick First author
Crick Corresponding author