Optimization of metabolic oligosaccharide engineering with Ac4GalNAlk and Ac4GlcNAlk by an engineered pyrophosphorylase
More about Open Access at the CrickAuthors list
Anna Cioce Ganka Bineva-Todd Anthony J Agbay Junwon Choi Thomas M Wood Marjoke F Debets William Browne Holly Douglas Chloe Roustan Omur Yilmaz Tastan Svend Kjaer Jacob T Bush Carolyn R Bertozzi Ben SchumannAbstract
Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.
Journal details
Journal ACS Chemical Biology
Volume 16
Issue number 10
Pages 1961-1967
Available online
Publication date
Full text links
Publisher website (DOI) 10.1021/acschembio.1c00034
Europe PubMed Central 33835779
Pubmed 33835779