PairGP: Gaussian process modeling of longitudinal data from paired multi-condition studies

More about Open Access at the Crick

Abstract

High-throughput technologies produce gene expression time-series data that need fast and specialized algorithms to be processed. While current methods already deal with different aspects, such as the non-stationarity of the process and the temporal correlation, they often fail to take into account the pairing among replicates. We propose PairGP, a non-stationary Gaussian process method to compare gene expression time-series across several conditions that can account for paired longitudinal study designs and can identify groups of conditions that have different gene expression dynamics. We demonstrate the method on both simulated data and previously unpublished RNA sequencing (RNA-seq) time-series with five conditions. The results show the advantage of modeling the pairing effect to better identify groups of conditions with different dynamics. The pairing effect model displays good capabilities of selecting the most probable grouping of conditions even in the presence of a high number of conditions. The developed method is of general application and can be applied to any gene expression time series dataset. The model can identify common replicate effects among the samples coming from the same biological replicates and model those as separate components. Learning the pairing effect as a separate component, not only allows us to exclude it from the model to get better estimates of the condition effects, but also to improve the precision of the model selection process. The pairing effect that was accounted before as noise, is now identified as a separate component, resulting in more accurate and explanatory models of the data.

Journal details

Volume 143
Pages 105268
Available online
Publication date

Keywords

Related topics

Crick labs/facilities

Acknowledged team