Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity
More about Open Access at the CrickAuthors list
Minee Choi Alexandre Chappard Bhanu P Singh Catherine Maclachlan Margarida Rodrigues Evgeniya I Fedotova Alexey V Berezhnov Suman De Chris Peddie Dilan Athauda Gurvir Virdi Wei Zhang James Evans Anna I Wernick Zeinab Shadman Zanjani Plamena R Angelova Noemi Esteras Andrey Y Vinokurov Katie Morris Kiani Jeacock Laura Tosatto Daniel Little Paul Gissen David J Clarke Tilo Kunath Lucy Collinson David Klenerman Andrey Y Abramov Mathew H Horrocks Sonia Gandhi Toggle all authors (30)
Abstract
Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.
Journal details
Journal Nature Neuroscience
Volume 25
Issue number 9
Pages 1134-1148
Available online
Publication date
Full text links
Publisher website (DOI) 10.1038/s41593-022-01140-3
Europe PubMed Central 36042314
Pubmed 36042314
Keywords
Related topics
Type of publication