Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-κB activation

More about Open Access at the Crick


Inherited and de novo mutations in the CARD14 gene promote the development of psoriasis, an inflammatory disease of the skin. Caspase recruitment domain-containing protein 14 (CARD14) is a member of the CARMA protein family that includes the structurally related CARD11 adaptor that mediates NF-κB activation by antigen receptors. We investigated the mechanism by which CARD14 mutation in psoriasis activates NF-κB. In contrast with wild-type CARD14, CARD14(E138A) and CARD14(G117S) psoriasis mutants interacted constitutively with BCL10 and MALT1, and triggered BCL10- and MALT1-dependent activation of NF-κB in keratinocytes. These alterations disrupted the inhibitory effect of the CARD14 linker region (LR) on NF-κB activation by facilitating BCL10 binding. Therefore, psoriasis mutations activated CARD14 by a mechanism analogous to oncogenic CARD11 mutations in non-Hodgkin B cell lymphomas. CARD14(E138A) also stimulated MALT1 paracaspase activity and activated both ERK1/2 and p38α MAP kinases. Inhibition of MALT1 with mepazine reduced CARD14(E138A)-induced expression of specific psoriasis-associated transcripts in keratinocytes. Our results establish the mechanism whereby gain-of-function CARD14 variants, which induce psoriatic disease in affected individuals, activate pro-inflammatory signalling.

Journal details

Volume 473
Issue number 12
Pages 1759-1768
Available online
Publication date

Crick labs/facilities