Publication highlights

Go inside our research

Explore a selection of research cases studies from the past five years.

Read now
A Crick researcher reading a scientific paper on a screen.

Intro

Researchers at the Crick are tackling the big questions about human health and disease, and new findings are published every week.

Our faculty have picked some of the most significant papers published by Crick scientists, all of which are freely available thanks to our open science policy.

Highlights

Filter by year of publication

α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease

Protein aggregation drives neuronal death in Parkinson’s disease, although how transition of monomeric protein structures to aggregated forms causes toxicity is unknown. We demonstrate that aggregation of the protein α-synuclein generates beta sheet-rich oligomers, which localise to the mitochondrial inner membrane, where they impair complex I-dependent respiration, induce oxidation of ATP synthase and cause mitochondrial lipid peroxidation. These oxidation events result in opening of the permeability transition pore, triggering mitochondrial swelling, and ultimately cell death. This work highlights how structural conversion of a protein changes its physiological interaction with proteins and lipids, and induces pathology in human cell models of disease.

View the publication

Published in Nature Communications

Published

Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation

Aberrant protein-lipid interactions occur in neurodegeneration, although their role is unclear. We show how the protein α-synuclein interacts with lipids to drive a form of cell death, ferroptosis. As α-synuclein aggregates, oligomeric species with hydrophobic domains incorporate into the plasmalemmal membrane, leading to altered membrane conductance and abnormal calcium influx following glutamatergic and dopaminergic stimuli. Aggregates induce iron dependent generation of free radicals, and peroxidation of polyunsaturated fatty acids, which underlies the incorporation of aggregates into the membranes. Targeted inhibition of lipid peroxidation prevents the aggregate-membrane interaction, abolishes aberrant calcium fluxes, and restores physiological calcium signaling in human neurons, highlighting a new causative role for lipid homeostasis in Parkinson’s disease.

View the publication

Published in Cell Death and Differentiation

Published

Antioxidant role for lipid droplets in a stem cell niche of Drosophila

This paper is a continuation of our major research theme on how dividing stem cells in the CNS are able to resist environmental stresses that shut down proliferation in most other developing tissues. It reports the first identification, in any species, of lipid droplets as protectors of stem cells. We discovered that hypoxia induces lipid droplets in the neural stem cell niche and that these protect the neural stem cells themselves from damaging polyunsaturated fatty acid (PUFA) peroxidation reactions. This study laid the foundation for our current mechanistic studies into the antioxidant functions of lipid droplets during development and tumorigenesis.

View the publication

Published in Cell

Published

Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila

This reports the first identification, in any species, of the microbiome as a key mediator of developmental stress-induced longevity. We found that mild oxidative stress during development robustly increases lifespan via the selective elimination of Acetobacter from the microbiome. This study also highlights that targeted remodelling of the early-life microbiome can provide an efficient strategy for extending healthspan and lifespan.

View the publication

Published in Nature Communications

Published

Return to quiescence of mouse neural stem cells by degradation of a proactivation protein

This paper provided the first evidence that stem cells in the adult mouse hippocampus are heterogeneous in their behaviour, with most stem cells differentiating and leaving the niche after they have become active but a small fraction returning to a shallow state of quiescence. These “resting cells” have an essential role in the long-term maintenance of an active stem cell pool.

View the publication

Published in Science

Published

Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments

This paper established that intestinal epithelial cells use BTNL/Btnl molecules to select for and regulate tissue-specific gamma delta T cell compartments. It established a biological mechanism by which epithelial cells communicate with local T cells at steady-state (“normality sensing”). Following on from our prototypic discovery of such a mechanism in mouse skin, the work established conservation of the process across tissues as well as across species. The system is unperturbed by microbial colonisation.

View the publication

Published in Cell

Published

High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation

The immune system is increasingly acknowledged to be integrated with general physiology, but the genetic pathways underpinning those are largely unknown. This study demonstrated that high-content immunophenotyping could be accomplished at scale, compatible with a genetic screen and in so doing identified 80 novel immunoregulators (“hits”) and established striking correlations of immunological traits with blood biochemistry markers such as cholesterol and sodium. The paper formed a basis for the successful and rapid application of high-content high-throughput profiling to COVID-IP and to cancer immunomonitoring, and has spawned mechanistic follow-up studies of several of the hits.

View the publication

Published in Nature Immunology

Published

A COVID-19 virus particle

A dynamic COVID-19 immune signature includes associations with poor prognosis

SARS-CoV-2 infection and life-threatening COVID-19 caused the world’s most severe infectious disease pandemic in 100 years. An immediate priority was to decipher what was happening to patients’ immune systems. Rapidly deploying its skill-sets in high-content, high-throughput immunoprofiling, the Immunosurveillance Laboratory identified a dynamic, COVID-19 immune signature that blended textbook immunoprotection with examples of immune dysregulation that today’s textbooks do not describe. Among those, three molecules measured upon hospital admission seemingly predict a patient’s likelihood of deterioration over the next week; knowledge which can benefit health-care resource management, and offer novel therapeutic targets in COVID-19 and other inflammatory infectious diseases.

View the publication

Published in Nature Medicine

Published

A temporal window for signal activation dictates the dimensions of a nodal signaling domain

This paper shows how temporal information in the zebrafish embryo is transformed into a spatial pattern. We demonstrate how the Nodal signalling gradient is formed in the early zebrafish embryo and show that its size and shape are determined by a temporal signal activation window created by a microRNA-mediated delay in the translation of Lefty, a Nodal antagonist. This paper was important as it not only challenged the long-held view in the field that the Nodal gradient was formed by a reaction–diffusion mechanism, but highlighted the importance of signalling duration in gradient formation.

View the publication

Published in Developmental Cell

Published

Long-range signaling activation and local inhibition separate the mesoderm and endoderm lineages

The induction of endoderm and mesoderm by the signalling molecule Nodal has long been a textbook example of how a morphogen patterns vertebrate tissues. This study overturned the view that tissues are patterned through a single long-range morphogen gradient. Instead we demonstrated that Nodal functions in an incoherent feedforward loop with Fgf, to determine endoderm and mesoderm specification. Nodal induces long-range Fgf signaling, which is required for mesoderm induction, while simultaneously inducing a cell-autonomous Fgf signaling inhibitor within cells destined to become endoderm. This work represents a major step forward in deciphering the organising principles underlying early embryonic patterning.

View the publication

Published in Developmental Cell

Published

Ubiquitin activation is essential for schizont maturation in Plasmodium falciparum blood-stage development

This study describes the ubiquitome of several stages of the intra-erythrocytic development and extracellular stage of the malaria parasite in the blood stream. It highlights the remarkable changes in ubiquitylation that occur and a number of very interesting substrates. Using a chemical biology approach we show the importance of the first step in the pathway and the consequences of its inhibition during intra-erythrocytic development.

View the publication

Published in PLOS Pathogens

Published

Preexisting and de novo humoral immunity to SARS-CoV-2 in humans

An example of our work on COVID-19 and of the flexible and collaborative nature of the Crick, involving several labs within the Crick and our collaborating universities and university hospitals. In this work, we described the discovery of pre-existing binding and neutralising antibodies against SARS-CoV-2 in uninfected and unexposed individuals. These antibodies, likely induced by exposure to seasonal coronaviruses, are present in a small percent of adults but in the majority of children, consistent with the relative sparing of the latter from the severe form of COVID-19

View the publication

Published in Science

Published

Plasmodium-specific atypical memory B cells are short-lived activated B cells

This paper provides strong evidence that “atypical” B cells are short-lived activated B cells, and are probably the result of chronic stimulation and not the cause of chronic malaria. This questions the commonly held view that atypical B cells are evidence of an aberrant or defective response in malaria.

View the publication

Published in eLife

Published

Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure

Children with intestinal failure cannot absorb the nutrients that are essential to be healthy. In the most severe cases, patients may require transplantation. However, there is a shortage of donor organs and complications can arise after surgery. We have shown how intestinal stem cells and intestinal tissues taken from patients can be used to grow functioning intestinal grafts in the laboratory, which could offer a safe and longer-lasting alternative to traditional donor transplants.

View the publication

Published in Nature Medicine

Published

Sex reversal following deletion of a single distal enhancer of Sox9

This systematic study revealed the complexity of the Sox9 regulatory region, but just one enhancer, “Enh13”, was shown by mutation studies to be essential for testis and subsequent male development. Sox9 expression is at the same very low level in XY Enh13 mutant embryos as in control XX gonads. Enh13 is efficiently bound by Sry in vivo and functions to initiate Sertoli cell fate during a short time window. This is in contrast to other redundant enhancers (e.g. TES) that bind Sry, but act later. This study helped explain Disorders of Sex Differentiation (DSDs), due to deletions and duplications mapping far upstream of Sox9, where the human Enh13 equivalent is located, as well as showing that some enhancers can be pioneering rather than redundant.

View the publication

Published in Science

Published

Histology of gonads from patient showing bilateral dysgenetic testis.

Testis formation in XX individuals resulting from novel pathogenic variants in Wilms’ tumor 1 (WT1) gene

Through analysis of a large collection of clinical cases of Disorders of Sex Differentiation (DSDs), and a mouse model, we showed that unlike previous association of WT1 variants with XY female development, variants of the fourth zinc finger (ZF4) WT1 are a relatively common cause of XX male development, where the gonads are testes or ovotestes. This article is typical of our interaction with clinical geneticists, where our studies on the mouse, including generating models of human disorders, provide valuable insight into conditions affecting patients, as well as revealing novel insights into the underling mechanisms.

View the publication

Published in Proceedings of the National Academy of Sciences

Published

Neutrophils support lung colonization of metastasis-initiating breast cancer cells

In this study we found that via the release of leukotrienes, neutrophils selectively support the more metastatic subset of cancer cells infiltrating the distant tissue and that this activity can be blocked by an inhibitor of leukotriene production. This is one of the most important publications from my laboratory, as it has contributed to the understanding of the crucial responses of neutrophils during metastatic progression.

View the publication

Published in Nature

Published

IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche

In this work we mined this database to refine hESC culture conditions. These data will be a powerful resource for the community and will lead to changes in how hESCs are cultured in the future. Building on these data, we demonstrated that IGF1-receptor/PI3K/AKT, but not FGF receptor, signalling is required for hESC self-renewal. We built a searchable website that includes a compendium of human embryo gene expression analysis and compiled a list of all possible ligand and receptor interactions.

View the publication

Published in Nature Communications

Published

Initiation of a conserved trophectoderm program in human, cow and mouse embryos

We discovered that the mechanism underlying the first lineage decision in human embryos is mediated via cell-cell contact, triggering a cascade of broadly evolutionarily conserved molecular events that initiates a switch to a placental progenitor programme. We believe that our study will have clinical impact given that the timing of this decision coincides with the stage when most human embryos arrest.

View the publication

Published in Nature

Published

CDK substrate phosphorylation and ordering the cell cycle

A phosphoproteomics analysis of CDK substrates has shown that the correct cell cycle temporal order of CDK substrate phosphorylation can be established by a single CDK. It is shown that there is a 50-fold increase of in vivo CDK activity during the cell cycle. Temporal order is achieved by a combination of this rise with differential sensitivity of substrates to CDK activity. Phosphosite turnover is very rapid which helps ensure sharp cell cycle transitions.

View the publication

Published in Cell

Published