Replication origin selection regulates the distribution of meiotic recombination

Abstract

The program of DNA replication, defined by the temporal and spatial pattern of origin activation, is altered during development and in cancers. However, whether changes in origin usage play a role in regulating specific biological processes remains unknown. We investigated the consequences of modifying origin selection on meiosis in fission yeast. Genome-wide changes in the replication program of premeiotic S phase do not affect meiotic progression, indicating that meiosis neither activates nor requires a particular origin pattern. In contrast, local changes in origin efficiencies between different replication programs lead to changes in Rad51 recombination factor binding and recombination frequencies in these domains. We observed similar results for Rad51 when changes in efficiencies were generated by directly targeting expression of the Cdc45 replication factor. We conclude that origin selection is a key determinant for organizing meiotic recombination, providing evidence that genome-wide modifications in replication program can modulate cellular physiology.

Journal details

Journal Molecular Cell
Volume 53
Issue number 4
Pages 655-662
Publication date

Keywords

Crick authors

Crick First author
Crick Corresponding author