Self-establishing communities enable cooperative metabolite exchange in a eukaryote
More about Open Access at the CrickAuthors list
Kate Campbell Jakob Vowinckel Michael Mülleder Silke Malmsheimer Nicola Lawrence Enrica Calvani Leonor Miller-Fleming Mohammad T Alam Stefan Christen Markus A Keller Markus RalserAbstract
Metabolite exchange among co-growing cells is frequent by nature, however, is not necessarily occurring at growth-relevant quantities indicative of non-cell-autonomous metabolic function. Complementary auxotrophs of Saccharomyces cerevisiae amino acid and nucleotide metabolism regularly fail to compensate for each other's deficiencies upon co-culturing, a situation which implied the absence of growth-relevant metabolite exchange interactions. Contrastingly, we find that yeast colonies maintain a rich exometabolome and that cells prefer the uptake of extracellular metabolites over self-synthesis, indicators of ongoing metabolite exchange. We conceived a system that circumvents co-culturing and begins with a self-supporting cell that grows autonomously into a heterogeneous community, only able to survive by exchanging histidine, leucine, uracil, and methionine. Compensating for the progressive loss of prototrophy, self-establishing communities successfully obtained an auxotrophic composition in a nutrition-dependent manner, maintaining a wild-type like exometabolome, growth parameters, and cell viability. Yeast, as a eukaryotic model, thus possesses extensive capacity for growth-relevant metabolite exchange and readily cooperates in metabolism within progressively establishing communities.
Full text links
Publisher website (DOI) 10.7554/eLife.09943
Figshare View on figshare
Europe PubMed Central 26499891
Pubmed 26499891
Keywords
Related topics
Type of publication