SH3BP4 regulates intestinal stem cells and tumorigenesis by modulating β-catenin nuclear localization
More about Open Access at the CrickAuthors list
Pedro Da Costa Antas Laura Novellasdemunt Ania Kucharska Isobel Massie Joana Do Vale Viegas Silva Carvalho Dahmane Oukrif Emma Nye Marco Novelli Vivian LiAbstract
Wnt signals at the base of mammalian crypts play a pivotal role in intestinal stem cell (ISC) homeostasis, whereas aberrant Wnt activation causes colon cancer. Precise control of Wnt signal strength is governed by a number of negative inhibitory mechanisms acting at distinct levels of the cascade. Here, we identify the Wnt negative regulatory role of Sh3bp4 in the intestinal crypt. We show that the loss of Sh3bp4 increases ISC and Paneth cell numbers in murine intestine and accelerates adenoma development in Apc mice. Mechanistically, human SH3BP4 inhibits Wnt signaling downstream of β-catenin phosphorylation and ubiquitination. This Wnt inhibitory role is dependent on the ZU5 domain of SH3BP4. We further demonstrate that SH3BP4 is expressed at the perinuclear region to restrict nuclear localization of β-catenin. Our data uncover the tumor-suppressive role of SH3BP4 that functions as a negative feedback regulator of Wnt signaling through modulating β-catenin's subcellular localization.
Full text links
Publisher website (DOI) 10.1016/j.celrep.2019.01.110
Figshare View on figshare
Europe PubMed Central 30811977
Pubmed 30811977
Keywords
Related topics
Type of publication