Thiophenecarboxamide derivatives activated by EthA kill Mycobacterium tuberculosis by inhibiting the CTP synthetase PyrG
More about Open Access at the CrickAuthors list
Giorgia Mori Laurent R Chiarelli Marta Esposito Vadim Makarov Marco Bellinzoni Ruben C Hartkoorn Giulia Degiacomi Francesca Boldrin Sean Ekins Ana Luisa de Jesus Lopes Ribeiro Leonardo B Marino Ivana Centárová Zuzana Svetlíková Jaroslav Blaško Elena Kazakova Alexander Lepioshkin Nathalie Barilone Giuseppe Zanoni Alessio Porta Marco Fondi Renato Fani Alain R Baulard Katarína Mikušová Pedro M Alzari Riccardo Manganelli Luiz Pedro Carvalho Giovanna Riccardi Stewart T Cole Maria Rosalia Pasca Toggle all authors (29)
Abstract
To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.
Journal details
Journal Chemistry & Biology
Volume 22
Issue number 7
Pages 917-927
Available online
Publication date
Full text links
Publisher website (DOI) 10.1016/j.chembiol.2015.05.016
Figshare View on figshare
Europe PubMed Central 26097035
Pubmed 26097035
Keywords
Related topics
Type of publication