Ultrasensitive measurement of Ca2+ influx into lipid vesicles induced by protein aggregates

Abstract

To quantify and characterize the potentially toxic protein aggregates associated with neurodegenerative diseases, a high-throughput assay based on measuring the extent of aggregate-induced Ca2+ entry into individual lipid vesicles has been developed. This approach was implemented by tethering vesicles containing a Ca2+ sensitive fluorescent dye to a passivated surface and measuring changes in the fluorescence as a result of membrane disruption using total internal reflection microscopy. Picomolar concentrations of Aβ42 oligomers could be observed to induce Ca2+ influx, which could be inhibited by the addition of a naturally occurring chaperone and a nanobody designed to bind to the Aβ peptide. We show that the assay can be used to study aggregates from other proteins, such as α-synuclein, and to probe the effects of complex biofluids, such as cerebrospinal fluid, and thus has wide applicability.

Journal details

Volume 56
Issue number 27
Pages 7750-7754
Available online
Publication date

Keywords